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APRSTRACT

In this thesls we present the basic inforﬁation—theoretic
concepts as utilized in measuring the amount of information
contained in a given experiment. Our main object is the study
of the concept of entropy which i1s defined as a measure of
the amount of uncertainty. An extensive but concise review
of the various seemingly different approaches to the notion
of entropy is made, and precise formulations are given for
computing the entropy function for (i) the discrete probability
distribution, (ii) the continuous probability distribution,
(iii) the generalized probability distribution, and (iv)
Markov chains.

Next, an investigation of the evolution of random graphs
1s made from the viewpoint of information theory. A graph,
and especially a digraph, has been shown by Bhargava, among
others, to be a reasonable probabilistic model in many applied
situations such as group dynamics and communication theory.
Time changes in such a graph are described by means of the
evolution of a random graph, which in turn is formulated in
terms of a stochastic process. In this thesis we evaluate
the entropy function for such random graphs in a few specilal

cases.



Finally, a specific group dynamics problem is consildered,
and the entropy is computed for the exact and approximate
probability distributions of two particular cases. A brief
empirical examination of these numerical computations is

also made.
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INTRODUCTION AND SUMMARY

The purpose of this thesis is twofold: (i) to present
a review of basic information-theoretic concepts as utilized
in measuring the amount of information contained in a given
experiment, and (ii) to investigate the evolution of random
graphs from the viewpoint of information theory.

Information theory is essentially a branch of the
mathematical theory of probability and statistics and has
applications in such filelds as statistical physics, quantum
mechanics, and biological sciences. However, the notion of
information as we know i1t today has 1ts basic foundations
in the field of communication theory. A simple communication
system consists of an information source, a transmitter, a
channel, a receiver, and a destination. The information
source contains a set of possible messages from which a
desired message is chosen. This message is then changed into
some sort of signal, by means of coding, to be transmitted
along the channel to the receiver where it is decoded and
sent to its destination. Any distortion of the original

signal is called noise.



The amount of information obtained from such a system
is not contained in the single message received, that is,
information has no relationship to the meaning of the message.
Instead, the concept of information applies to the situation
as a whole and 1s a measure of the freedom of choice in
selecting the message. If there is complete choice in
selection, that is, if all messages are eqgqually likely to be
chosen, then maximum information 1s obtained. However, if
the probabilities of being chosen are different for various
messages of the set, then the measure of 1nformation becomes
an obvious function of these probabilities.

The statistical concept of information as introduced by
Fisher consists in measuring the amount of information directly
from the given experiment. More specifically, in large
samples, a numerical measure of information, which the sample
contains and which is relevant to the parameter, is obtained
as the reciprocal of the variance of the estimator. However,
later it was found more fruitful to define a measure of
information by determining the amount of uncertainty involved
in the experiment. That this should be so follows from the
observation that, a priori, just before an experiment is
carried out our interest lies 1in the amount of uncertainty
involved in the outcome of the experiment, while, posteriori,

after the experiment has been carried out our concern is the



amount of information gained from the experiment. It 1is not
very surprising then that the measure of information and the
measure of uncertainty are found to be closely related to
each other.

Our main concern in this thesis 1s the information-
theoretic concept of entropy which 1is defined to be a
measure of the amount of uncertainty. The first systematic
study of entropy and its properties was made by Shannon
approximately twenty years ago. Since that time many well-
known mathematicians such as Khinchin, Feinstein, Wolfowitz,
Rényi and Pinsker have made important contributions to the
mathematical soundness and theoretical development of the
field of information theory, maigly from the viewpoint of
entropy.

Today there exist two basic approaches for measuring
information: (i) the axiomatic, or postulational, approach,
and (ii) the pragmatic approach. The axiomatic approach
has been found to be more useful in practice than the pragmatilc
approach; however, these two points of view are not really
opposed to each other. We discuss these approaches at some
length later in thilis thesis.

A graph, especially a digraph, which consists of a
set of points, and a set of edges defined between some or
all pairs of points in the set, has been shown by Bhargava,

among others, to be a reasonable probabilistic model,



under suiltable assumptions, in certain practical situations.
Time changes in such a graph (or digraph) can be described
by means of the evolution of a random graph, which in turn
can be formulated in terms of a stochastic process. In this
thesis we evaluate the entropy function for such models in

a few special cases.

The first chapter of this thesis is entirely devoted
to various approaches to the notion of information and
entropy, and whenever possible or relevant, to a comparative
study of these seemingly different approaches. In sectilon
1.1 we give definitions of statistical information as given
by Fisher, Shannon and Kullback. In section 1.2 axlomatic
approaches to the definition of entropy as expounded by
Shannon, Khinchin and Rényi are presented. First, we define
the entropy for the simplest case, namely for the finite
discrete probability distribufion, then for the continuous
probability distribution, and finally for the generalized
probability distribution. The pragmatic approach of Wolfowitz
is presented in section 1.3, with a few short remarks comparing
it with the axiomatic approach as given in section 1.2.

A unified approach to the mathematical definition of
entropy directly in terms of information, as given by
Dobrushin and expounded by Pinsker, 1s given in section
1.4, while a definition of entropy for Markov chains as
developed by Ambarcumjan is given in section 1.5. Finally,

we mention an axiomatic characterization of entropy, without

4



presupposing probabllity, by means of finite Boolean rlngs,
as given by Ingarden and Urbanik.

In the second chapter, first of all, some basic
relevant definitions from the theory of graphs, directed
graphs, and random graphs as studied by Erdts, Rényi, Gilbert,
and Bhargava are given in sections 2.1 and 2.2. A measure
of entropy for different kinds of random graphs and digraphs
- is derived in section 2.3. Finally, computations of the
entropy for a specific probability model are made 1in section

2.4,



CHAPTER T

ENTROPY AND INFORMATION

In this chapter we present the notion of statistical
information, entropy as related to information, and a
unifiled treatment of information and entropy. For detaills
we refer to Shannon [22], Khinchin [16], Rényi [20] and

Pinsker [19].

1.1 Statistical Information

Let x be a random variable with the probabllity density
function given by f(x|8). Let the density function f satisfy
the well-known Cramer-Rao conditions, and I(6) denote the

information function.

Definition 1.1.1: (Fisher)

I(e) = - [ (82/362) [1n f(x]|6)]f(x]|e)dx

Definition 1.1.2: (Shannon)

I(e) = [[1n f(x]e)Ilf(x|e)dx
The following defines the information for "discriminating

. . .
in favor of Hl(el) agalnst H2(92) :

Definition 1.1.3: (Kullback)

= Jinlr(xle;)/r(xle,)] £x|e,)ax

1(91’62)

For an extensive historical review of statistical



information theory we refer to the excellent papers by

Cherry [4], Fraser [10], Green [13], and Gnedenko [12].

1.2 Axiomatic Approach to Entropy

Entropy of finite discrete distributions: Let Al’ A2, vy
An be a complete system of events, that is, a set of events

which are mutually exclusive and totally exhaustive.

Definition 1.2.1 The complete system {A;, 1 < 1 < n},

together with its probability set {p. = P(A.), 1 < 1 < n:
1 i7? — —

™ n
p, £0, .lei = 1}, is called a finite scheme, and is
1:
denoted by
A > A 5 3 A
A = 1 2 n
pl’ p2) L] pn

Every finite scheme describes a state of uncertainty and
for many applications it is desirable to ir.troduce a quantity

which in a reasocnable way measures the amount of uncertainty.

Definition 1.2.2 The entropy of the finite scheme A is a

measure of uncertainty of the scheme and is denoted by

H(pl’ Pss ...,pn); it is characterized by the following

postulates:

Postulate 1: H(p, 1l-p) is continuous for 0 < p < 1,

and H(1/2, 1/2) = 1.

Postulate 2: H(pl,pz, «v.op ) 15 a symmetrical function
n

of its wvariables.



Postulate 3: If all the pi's are equal, that is,

p;= 1/n (i=1,::.,n), then H is a mono~

tortc ‘increasing function of n.

Postulate 4: If 0 <t < 1, then

H(pl’ tee pn_l) tpn, (l_t)pn) =

H(py, «+v5 ppy) 7 an(t,l-t).

Theorem 1.2.1 (Shannon) The only function satisfying the

above postulates, viz. 1, 2, 3, and 4, is of the form

pjlog p; (1.2.1)

i~13

H(pl: p2:"°9 pn) = =K 1

i
where K is a positive constant which depends upon the choice
of a unit of measure, and all logarithms are taken to an

arbitrary but fixed base, with pilog p; = 0 irf py = 0.

%, cen l)= A(n). From postulate (4) we

’n

S

Proof. Let H(

3

can decompose a choice from s equally likely possibilities
into a series of m choices each from s equally likely possi-
bilities and obtain

A(s™) mA(s)

Similarly

A(t™) nA(t)

We can choose n arbitrarily large and find an m to satisfy

M ¢ g0 o g(m+1)

Thus, taking logarithms and dividing by n log s,

m log © m 1 m log €
(1) 7= Tog s <n'tn or n~ Tog s| -




where € is arbitrarily small. Now from the monotoniec

property of A(n), aA(s™) < A(t™) < A(sm+l)

or, mA(s) < nA(t) < (m+l)A(s).

Hence, dividing by nA(s),

(2) m . A(t) cm4 1 or m_ A(t) | <
n — A(s) —n n n A(s)
Using (1) and (2) above
ACt) _ log t | < 2¢, which yields A(t) = -K log t

A(s) log s | —

where K must be positive to satisfy postulate (3).

Now suppose we have a choice from n possibilities with

Ne
commeasurable probabilities p; = zl where the n; are inte-
Vis
i
gers. We can break down a choice from Z n; possibilities

into a choice from n possibilities with probabilities
P> - 5>Pp and then, if the ith was chosen, a choice from
n; with équal probabilities. Using postulate (4) again,
we equate the total cholice from Z n, as computed by two
methods

K log z n, = H(pl,...,pn) + K Z Py log nj

Hence

K[ ]p; loglng -1 p; logng]

H(pys...5p,)

n.
-K1 p; log Z%; = -K ] p; log py

If the p, are incommeasurable, they may be approximated by



rationals and the same expression must hold by our continuity
assumption. Thus the expression holds in general. The

choice of coefficient K is a matter of convenience and amounts
to the choice of a unit of measure.

It can be shown (see [16]) that the entropy function
H(pl’ P> ...,pn) has the following properties, all of which
we would intuitively expect of a reasonable measure of
uncertainty.

(1) For fixed n the scheme with the most uncertainty
is the one with equally likely outcomes, i.e., p; = 1/n,
i=1, ...,n.

(ii) For two finite schemes

.- Al A2,...,An) . (Bl, B2,...,Bm)

pl’ p2:---; pl’l ql’ Q23--°5qm

such that A and B are mutually independent, the probability

T of the joint occurrence of the events Ai and Bj is piqj’

1]
The set of events AiBj’ (1l <i<n,1<j< m), with prob-

abilities m;.; represents another finite scheme, which is

iJ
called the product of the schemes A and B and is designated
by AB. |
If H(A), H(B), and H(AB) are the corresponding entropies
of the schemes A, B, and AB, then H(AB) = H(A) + H(B).
(iii) For the case where the schemes A and B are mutually

dependent, we denote by aj the probability that the event

J

10



Bj of the scheme B occurs, given that the event Ai of the
scheme A has already occurred, so that

Tij = Pidij> 1 < i< n, 1 <J < m.

Ir HA(B) denotes the-conditional mathematical expectation

of the quantity H(B) in the scheme A, then
H(AB) = H(A) + HA(B)

(iv) 1In all cases Hy(B) < H(B), that is, on the average
the knowledge of the outcome of scheme A can only decrease
the uncertainty of scheme B.

(v) H(py, Pos--+s Py, 0) = H(pl, Dys-+.5 Py), that is,
adding the impossible event or any number of impossible
events to a scheme does nct change its entropy.

We note that while (ii) above gives one of the most
important properties of entropy, namely "additivity," we
cannot replace postulate (4) in the characterization of
entropy by property (ii), because (ii) 1s much weaker. We

also remark that there are functions other than

n
H(P) = - ) p; log 1 which satisfy postulates (1), (2), (3)
i=1

and (ii). For example, Rényi gives the following definition

of an entropy:

Definition 1.2.3 The function

a

n
H,(Pys Pos--+» Pp) = I%E 1og2§Zl pi), @ > 0, a # 1,

11



is called the entropy of order o of the distribution

P = (pl, Doseres pn) and is dencted by Hy(P).
However, Shannon's measure of entropy is the limiting

case, as a » 1, of Rényi's measure of entropy, that is,

I 113

lim Ha(pl, Posesrs pn) = - p; log, py = H(P).

ol i=1
Hence Shannon's measure of entropy, which is denoted by

Hl(pl, Poseses pn), may be called the entropy of order 1 of

the distribution P.

Entropy of a Continucus Distribution

Definition 1.2.4 The entropy of a continuous distribution

with the density function p(x) is

H=-f p(x) log p(x) ax.

For an n-dimensional distribution with the density
function p(xl,..., xn)
H= [...] D(Xy500n, x,) log p(xl,..., xn) dxq... dx

Given random variables x and y (which may themselves be multi-

dimensional), we have

Definition 1.2.5 The joint entropy of p(x,y) is

H=- [ f p(x,y) log p(x,y) dx dy

Definition 1.2.6 The conditional entropies for p(x,y) are

12




p(x,y)

B (v) = - [ [p(x,y) log —gy-dx dy
H (x) = - p(x,y)
y(x) [ [p(x,y) log —Ezyy—dx dy
where
p(x) = [ p(x,y) ay
p(y) = [ p(x,y) ax.

The entropies of continuous distributlions have most
(but not all) of the properties of the discrete case. For
example, we have
(i) for any twc variables x, ¥y
H(x,y) = H(x) + H(y)
if and only if x and y are independent.(Random variables x

and y are independent if p(x,y) = p(x) p(y)),

(i1) H(x,y) = H(x) + H (y) = H(y) + Hy(X), and

Hy(y) = H(y), Fy (x) < H(x).

There i1s, however, one important difference between the dis-
crete and continuous entropies. In the discrete case the
entropy measures in an absolute way the randomness of the
chance variable. In the continuous case the measurement

is relative to the coordinate system; if the coordinates

are changed, the entropy will, in general, also change.

In the continuous case the entropy can be considered a
measure of randomness relative to an assumed standard,

namely the coordinate system chosen.

13



In spite of this dependence on the coordinate system,
the entropy concept is as important in the continuous case
as in the discrete case. This 1s due to the fact that the
derived concepts of information rate and channel capacity
depend on the difference of two entroples and this differ-
ence does not depend on the coordinate frame, each of the

two terms being changed by the same amount.

Entropy of Generalized Probability Distributions

The characterization of measures of entropy (and informa-
tion) becomes much simpler 1f we consider these quantities
as defined on the set of generalized probability distributions.
Let (2,8,P) be a probability space in which Q is an arbitrary
nonempty set called the set of elementary events. B8 1s a
g-algebra of subsets of @ which contains & itself. And P is
a probability measure, which is a nonnegative and additive
set function for which P(Q) = 1, defined on B. First we give
some relevant standard definitions from the probabllity

theory.

Definition 1.2.7 A function & = &£(w) which is defined for

w e @1, where 2,e B and P(Ql) > 0, and which is measurable

with respect to B is called a generalized random variable.

Definition 1.2.8 1If P(Ql) = 1 then ¢ is called an ordinary

(or complete) random variable.

14



Definition 1.2.9 If O < P(Ql) < 1, then € is called an

incomplete random variable. An incomplete random variable

can be interpreted as a quantity describing the result of an
experiment, depending on chance which is not always

observable, only with probability P(Ql) < 1.

Definition 1.2.10 The distribution of a generalized random

variable i1s called a generalized probability distribution.

In particular, when & takes on only a finite number of

different values Xl’ x2,..., X, the distribution of & consists

1}
lav]
—
o

I

of the set of numbers p. x;) for 1 =1, 2,...,n. Thus,

Definition 1.2.11 A finite discrete generalized probability

distribution is a sequence Pys Pps +ots P, of nonnegative
n
numbers such that fcr P = (p,, Pr,-.-, P..) and W(P) = ) P s
1 2 n j=1

we have 0 < W(P) < 1. W(P) is called the weight of the
distribution. Thus the weight of an ordinary distribution

is equal to 1.

Definition 1.2.12 An incomplete distribution is a distribution

for which W(P) is strictly less than 1.

Let A denote the set of all finite discrete generalized
probability distributions, that 1s, A& 1s the set of all
sequences P = (pl, Poseses pn) of nonnegative numbers such

that 0 <
i

pi < 1.

e~

1

15



Definition 1.2.13 The entropy H.(P) of a generalized
L

probability distribution P = (pl, Poseen, pn) is characterized

by the following five postulates:

Postulate 1: H(P) is a symmetric function of the

elements of A.

Postulate 2: If {p} denotes the generalized probability

distribution consisting of the single
probability p, then H({p}) is a continuous
function of p in the interval 0 < p < 1.

Postulate 3: H{{1/2}) = 1.

Postulate 4: For P e 4 and Qe A, H(P% Q) = H(P) + HQ).

Ifp = (pl, POsenns pm) and Q = (qq, Apseees qn) define two
generalized distributions such that W(P) + W(Q) < 1, then we
define PU Q@ = (Pys Posevvs Prs Qys Gpseees Q)3

if W(P) + W) > 1, PV Q is not defined.

Postulate 5: IfP ¢ oA, Q ¢ a, and W(P) + W(Q) < 1,

W(P) H(P) + W(Q) H(Q)
W(P) + W(Q)

then H(PUVQ ) =
For a more detailed presentation see [20].

1.3 Pragmatic Approach to Entropy

In the preceding section we 1nvestigated the axiomatic
approcach to the concept of entropy. In other words, starting
from the intuitive notion of information, we described the
properties which a reasonable measure of information must

possess and then it was necessary to find those mathematical

16




expressions which satisfy the postulated properties.

On the other hand, it is valid to consider the pragmatic
approach to the same problem. We may consider certain spec-
ific problems in information theory and accept as a measure
of information the actual solution obtained. This approach
has been emphasized by Wolfowitz in his book [23]. We present
now, as an example, a simple coding problem and the formula-
tion of its entropy as described by Rényi in [21].

Let El, £2,..., En be a sequence of independent identi-
cally distributed random variables, each of which takes on

X_ with corresponding

the different values X715 Xpseees Xy

probabllities Pys Posesvs Pgo that is,

a
o = P(&y =x ), 1 <k ca, 1<Jcn: py i'o=kzlpk =1k

The sequence El, 52,..., En may be interpreted as produced
by an information source emitting statlionary and independent
signals. Let Qn be the set of all ordered sequences of length

X, Let a fixed number €

n of the symbols xl, Xoseers Xg

(0< € <1) be given and consider those subsets E of Qn for which

Pn(E) > 1 - € where Pn(E) is the probability that the observed

sequence El’ £ &n belongs to the set E. Let b(n,e)

YRR
denote the minimum of the number of elements of such sets.
In other words, if N(E) denotes the number of elements of

such sets E, then b(n,e) = min N(E), where Pn(E) > 1 -e.

17



Now it can be shown that the limit

n+ +e n

exists, 1s independent of E, and it depends only on the
distribution P.
That is,

H(P) =
k

o153

1
Py log, , T 4.
1 k 2 D,/
If the numbers Py are all equal then

. — log n
1 b = nH + /n A - === + 0(1)
g, (n, €) nH(P) n D 2 log 2

where 1
2

D=-—§ ( log, = - H(P) fp,
k=1 Dy

and A is defined by ¢(Ax) = 1 -e, where ¢(x) denotes the standard

normal distribution function

X 2
o(x) = —= [ e /24y
V2w -

and 0(1) denotes a remainder term which remains bounded for
n-> + o,

Thus we may consider as a pragmatic definition of the
entropy H(P) the following interpretation. If we want to
express the sequence of signals El’ 52,..., En by a sequence
of O's and 1's so that the correspondence should be one-to-one

then this can be accomplished by using sequences of 0's and

1's of length nH(P) + 0(vn).

18




Thus if we accept as the unity of the amount of information
the maximal amount of information which a signal capable of
only two values (0 and 1) can carry, the H(P) can be interpreted
as the amount of information per signal produced by a stationary
source of independent signals, if the probabilility distribution
of the possible values of the signals is
E = (pl, Po,...5P4). In which case

H(P) < log, a

with equality if Py = Ppo= ...=p,= 1/a.

Comparison of the axiomatic approach to the pragmatlc
approach reveals that these are not really opposing points of
view, but instead are complementary to each other. One
provides a necessary check on the other. The axiomatic
approach may give a theoretically sound characterization of
entropy but it must also provide a mathematical expression
which can be utilized to advantage in practical problems.

On the other hand, solutions to specific problems are not

of speclial consequence 1f they are basically unrelated to
each other. However, if these solutions repeatedly follow

a definite form having similar properties, then the approach
is significant. Such 1s the case with the measure of

information.

19



1.4 Entropy in Terms of Information

Let £ and n be random variables with values in the

measurable spaces (X,SX) and (Y,Sy) respectively.

Definition 1.4.1 The value

Pgn(Ei x Fj)

I(¢, n) = sup | P, (E; x F.) log
i,5 °" J Pg(E; )P (F;)

where the supremum 1s taken over all partitions {Ei} of X and

{Fj} of Y, is called the information of one of the variables

with respect to the other.

Definition 1.4.2 The quantity I(£,£) = H(E) is called the

entropy of the random variable £.

Definition 1.4.3 The function ign(x,y) = log agn(x,y) is

called the information density of the random variables £ and n.

The following basic properties of information are due
to Pinsker and proofs may be found in [19].

(1) I(g,n) > O.

I(g,n) = 0 if and only if & and n are independent.
(ii) I(g,n) = I(n,&).
(iii) If the random variables & = (El, 52) and n = (nl,n2)

are independent, then

I((El,nl), (52,712)) = I(€1’€2) + I(nl,rz),

20



and with probability one
i(ﬁl,ﬁz),(nlm2)) = 1(6,,85) + 1(ny,ny).
(iv) If the random variable n = f£(Z) 1s a measurable
function of the random variable z, then
I(g,n) < I(z,n).
(v) If g = (El,a

.), then

I(¢,n) = lim I((El,..., En), n.

n >

Definition 1.4.4 The function hg(x) = log agg(x,x)

log l/PE(x)= -log P_(x) 1is called the entropy density of ¢,

g
and is different from zero only on the countable set of
points x,, x5, for which P(xl), P(x5), ... # 0.

For our purposes, it will be sufficient to generalize the
concept of entropy so that information becomes a special case
of entropy.

Let Pl and P, be two probability measures defined on the

2
same measurable space (Q,Sw) and 1let {Ei} be a partition of Q.
with respect to

Definition 1.4.5 The entropy H (Pl) of P
2

E 1

P2 is

HP2(P1) = sup g Pl{Ei} log | Py {E;} / Py {Ei}]

where the supremum is taken over all partitions of €. Then

I(g,n) = H (P, ).
ngn En

21



In general the properties of the entropy HP

simply repetitions of the corresponding properties of infor-

(P.) are
5 1

mation (see Pinsker [19]).

1.5 Entropy of Markov Chains

Let Al’ A2,..., Ak”" be events jolning a stationary

Markov chain of order r with a finite number of states

Sl,S2,...,Sn for every event. Let p(j), j=1,2,...,n denote
n
the probability of the state Sj’ and 2 pj=1. Let
J=1
P35 J ... (Jm+1) denote the probability of the state Sj
172 m m+1

for the event Am+1 given that the first m events were in the

states S, , S, ,..., S, .
N Jm

In general, for chains of order r, we have

P+ ...: (J ) = p; . s (3 ) where m>r.
Jido I m+1 Jm-r+l Jm—r+2 1m m+1

Definition 1.5.1 One-step entropy of a Markov chain of

order r, we have denoted by H,, and 1is defined by the

guantity
= - .. j . (3.)...p, . . (F )
H=-11 L} [oCy) py Gp)eepy 50 Yrn
log {p. . (J,e10H] .
Jpdo  tdp 7T
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We notice that

(1) for independent events

D (Gpsp) = PG, )

jlj2"'jm m+1
(1i) for simple chains (order one),

) =p, (J ).

p m+1

I .G
J1doer d, Tmtl Jm

(iii) for chains of order two

(Jpe1) =Py 5 (3 ,1)s ete.

P. . .
J1d2--+dm Im-19m

From this 1t is obvious that
(1) for independent events we have
Hr = Hr—l = ... = HO
(ii) for simple chains (order one)
H =4¢H = ... = Hy,
(1ii) for chains of order two
H, o= H,_, = ...=H,,

Let p(jlj2 ...jk) denote the probability of the joint

occurrence of k events in states jl,j2,...jk respectively.

Definition 1.5.2 The mean one-step entropy (denoted by ﬁk)

is defined by

H= - i YL ool pIqsdnseendy)  log p(Ipsdos.-endy)-
Jid2 Jk
It can be shown that for Markov chains of order r, 23



k>r, we have lim Hk = H_.
Ko r

For proof of the above, and a detailed treatment of
varicus definitions of the Markov chains we refer to a
paper of Ambarcumjan [1], translated from Russian by

Dowker [6].

1.6 Remarks

For the sake of completeness, we also mention that a
definition of entropy, without presupposing the notion
of probability has been given by Ingarden and Urbanik [15].
This definition makes use of Boolean rings with elements
of a ring being considered as events. Hence, the whole
algebraic structure is interpreted as an experiment. The
information is defined as a real-valued function on a set of
finite Boolean rings. However, it i1s far too involved to be
presented here. It must be pointed out here that Rényi [21]
has shown that this approach which first introduces infor-
mation, without using probabilities, does finally involve
probabilities, and that the information thus defined can be
expressed in terms of Shannon's entropy measure by means
of a uniquely defined conditional probability measure.
This i1ncidentally also supports the view that the notion

of information cannot be separated from that of probability.
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CHAPTER II

ENTROPY AND GRAPH THEORY

In.this chapter we present the fundamental notions and
definitions for graphs and digraphs, and the two basic
definitions of a random graph as given by Erodds and Rényi
[7], and Gilbert [11]. The entropy function is formulated
for the most common random graphs and digraphs, and actual
values of the entropy are computed for a specific problem

of group dynamics taken from Bhargava [3].

2.1 Definitions From Graph Theory

In this section we state in simple terms some of the
definitions, from the theory of graphs and directed graphs,
which are relevant to our work. Detalled accounts may be
found in Berge [2], Bhargava [3], and Ore [18].

Let A = {Py, Py, ..., Pn} te a finite collection of n
points.

Definition 2.1.1 A graph G(A) of order n, on the set A consists

of all the points in the set A (called vertices of the graph) ,
and a set or collection of lines {(called edges of the graph)
joining pairs of points in the set A.

Definition 2.1.2 A path from vertex P; of G(A) to another

vertex P'j consists of a chaln of edges from Py to Pj, and
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the number of lines in the path denotes the length of the
path.

Definition 2.1.3 A c¢cycle 1s a closed path.

Definition 2.1.4 A graph is connected if there exists a

path between every pair of its polints; otherwise disconnected.

Definition 2.1.5 A digraph (directed graph) TI(A), of order n

on the set A consists-of all the polnts in the set A, and

a set of directed edges Joining ordered palrs of points in A.

Definition 2.1.6 A directed path from Pi to Pj is a chain of
—_— —> —

directed edges of the form P;P;q, PilPi2 s eees PiLPj5 the

length of the path 1s L, the number of directed edges in the

directed path.

Definition 2.1.7 T(A) is a labelled digraph i1f each vertex

of T(A) is distinguishable from every other vertex.

Definition 2.1.8 A point Pj is said to be accessible from
a point Pi if there is a directed path of some length greater
than zero from Pi to Pj'

Definition 2.1.9 T(A) is strongly connected if each point

of A is accessible from every other point; T(A) is unilaterally

connected if, for every pair of points belonging to A, there
is a directed path from at least one of them to the other;

r(A) is weakly connected if there is a chain of connections,

ignoring all directions, from each point of A to every other

point; T(A) is disconnected if it 1s not even weakly connected.
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2.2 Evolution of Random Graphs

There are two known different approaches to the theory
of random graphs; one, due to Erdos and Rényi [7], and the

other due to Gilbert [11]. We describe these briefly in this

section.
Erdos and Rényl Approach: Let E_ y denote the set of all
3
graphs having n given labelled vertlces Pq, P2, ..., Pp and

N edges. These graphs are not orlented, without parallel
edges and without loops. Thus a graph belonging to the set

E, N is obtained by choosing N out of the possible ﬁﬂ edges
5

between the points Pl’ Py, voes P,, and therefore the number
n
of elements of En N is equal to GQD . We define a random
> N

graph, denoted by T , to be an element of E chosen at
nsN I’I,N

random, so that each of the elements of E, y have the same
3

N
Another point of view describes the formulation of a

probability to be chosen, namely 1/ “Su

random graph as a stochastic process, but is equivalent to
the one given above. At time t = 1 we choose one of the

(g) possible edges connecting the points Py, P2, cees P
each of these edges having the same probability to be chosenj

let this edge be denoted by ey. At time t = 2 we choose one

of the possible (2) - 1 edges, different from e, all these
being equiprocbable. Continuing this process at time t = k + 1
we choose one of the (2) - k possible edges different from
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edges €15 €p, ..., €, already chosen, each of the remaining
edges having the probability 1/ (5 - k . We denote by
Fn,N the graph consisting of the vertices Py, Poy, ..ty P,
and the edges ey, ep, ..., ey.

The following theorem on connectedness of random graphs
is due to Erdos and Rényi:

Theorem 2.2.1 Let Po(n, N,) denote the probability of TN

being completely connected for N = N,, where NC = (1/2 n log n

+ cn). Then

e—2c
lim Po(n,Nc) = e
n->+e
For proof, we refer to [7].
Gilbert Approach: Let Pl’ P2, ceey Pn be a set of n points.

There are n(n-1)/2 lines which can be drawn joining pairs of
these points. Any subset of these lines is a graph and there
are 2n(n-1)/2 possible graphs in all. One of these graphs

is chosen by the following random process, and 1s called a
random graph: for all palrs of points make random choices,
independent of each other, whether or not to join the points
of the palr by a line. In such a random graph a point Pi

is connected to a point P; if there is a path of edges from

J

Pi to Pj, and the random graph is said to be connected if

for every pair of points (Pi’Pj)’ Pi is connected to Pj'
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Let the probability that the graph 1s connected be
Pn and the probablility that two specific points are connected
be R,. We have (see Gilbert [11]):

Theorem 2.2.2

1 - nqn—l + O(n2q3n/2)

g
]

1 - 2q™1 + 0(ng3n/2)

o]
1]

or, asymptotically for n,

n-1
Pn vl nq

R ~ 1 - 2qg
where p 1s the probability of adding an edge to the random
graph, and g = 1 - p the probability of erasing an edge

from the complete graph.

2.3 Entropy of Random Graphs

We derive, in this section, the form of the entropy
function for a few special cases of the evolution of a
random graph and digraph.

Special Cases:

(1) Let A, be the event that there is an edge from
Pi to Pj in the random graph T consisting of n vertices,
and let A, be the event that there is no edge from Pi to
P,. For alli,j =1, 2, ..., n, we take P(A;) = 1/(n/2),
and P(A2) =1 - 1/(n2/2), that is, the probability of
CxZ A28
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finding any edge out of the n2/2 possible edges (includ-
ing loops; a loop is an edge from a point to itself) is the
same.

We have a finite scheme

b Ao

1/(n2/2) 1 - 1/(n2/2)

for which the entropy H is given by
2
H=-K ) P(A;)log P(A,)
J':l J J
= —K[1/(n2/2)1log 1/(n2/2) + (1-1/(n2/2)1log(1-1/(n°/2))]
= _K[2/n2(log 2/n2 - log(1-2/n%)) + log(l-2/n°)]

H = -K[2/n°log 2/(n°-2) + log(l- 2/n%)] (2.3.1)

(ii) We note that if loops are not allowed then the

probabilities P(Al) and P(A,) are l/EL%:ll , and 1 - 1/2&%1&1
respectively, and the entropy H is given by
2
H=-K ) P(A.,)log P(A;)
L& J J
j=1
2 2 2 2
= - log —=—— +[1- ———Jlogll - ———
n(n-1) & n(n-1) n(n-1) & n{n-1) )
2
2 2 nc-n-2 2
= -K(—7—= —=— - log———~] + logll- =/ —%
K o8 ntmeny ~ 1%8n(n-1)? el1- )
2 2 2
H = -K 1 + logl[l - —=——] (2.3.2)
(n(n—l) ne-n-2 & n({n-1) )

(iii) In general, let P(Al) = p, P(A;) =g, qa=1-p,

so that

30




oy
1]

s
]

(iv)

terminology, P(Aq) = 1/n2, P(A>)

when loops are allowed; and P(A;)

-K[p log p + (1-p)log(l-p)]

-K[p log Igi + log(l-p)]

In a random digraph, with proper modifications of

for the case when loops are not allowed.

cases, we find:

H = -K[1/n%log 1/n° + (1 - 1/n2)log(l - 1/n2)]

ja o]
]

H = -K

(v)

scheme

-K[1/nlog 1/(n2-1) + log(l - 1/n2)]

1 1 _ 1 _
[n(n-l)log n(n-1) o n(n—l)log(l
1 1 1
L ootoe ooy o tee - sy

(2.3.3)

1l - l/n2 for the case

For these two

(2.3.4)

I )]

n(n-1)

(2.3.1

Letting p = 1/2, we find, for the general finite

( Ay A2)
1/2 1/2

the maximum value, Hmax’ of the entropy H:

max

max

-K[1/21log 1/2 + 1/2 log 1/2]
-K[(1/2 + 1/2)1log 1/2]
-K[-1og 2]

K log 2

(2.35)

1/n(n-1), P(A5)= 1-1/n(n-1),
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General Cases:

(1) Consider now the general scheme in a random
graph (with loops), with events A, taking place with
2
probabilities P(A;)= 1/(n §2), j=1,2, ..., n°/2. The

entropy function is

2 2
n?/2 (- 1 gt (7 - e
H=-K ] > log —
2 2
n®/2 (A% pyr | | Bg-2 2
H=-K ¥ ) log (5 -j-k) +
j=1 (n)1 k=1
2
2
J=2 % -2 n2
kzllog(j—k) - kzllog(g -k) (2.3.6)

(1ii) The other interesting case of (i) consists in

2
taking P(Aj)= l/(% -j+1) in which case we get

n§/2 1
H = =K 2] 1o >
321 (F-3 41 (5T-3 4D
n2/2 1
H = KJZI mlog (E -J +1) (2-37)
2

(iii) Pinally, taking P(Aj) to be all equal to 1/(n2/2x

we get the maximum entropy

H = -K .2 P(Aj) log P(AJ)
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“K[(1/(n2/2) + ... + 1/(n%/2)) log 1/(n2/2)]

fa o]
1}

max

K log(n2/2) (2.3.8)

s
1

max

(iv) We may similarly derive the entropy function H

for the three cases in a random digraph (with loops), giving

n2 ne
H = -KJZIP(Aj)log P(A) 5 P(Aj) 1/(2 )
nE n2—j—2
H=-K) (n2-j)t j! 77 log(noj-k) +
j=1 (n2)! k=1
Jg-2 n2—2 5
) log(j-k) - ) log(n©-k) (2.3.9)
k=1 k=1
2
n 2
H=-K ) P(A.)log P(A,) ; P(A;)= 1/(n“=-j+1)
51 J J J
H = K[ 1 log (n2—j+l)] (2.3.10)
(n2-3j+1)
2
- kv . = 1/n2
Hmax = -KjZlP(Aj) log P(Aj) : P(Aj)- 1/n
H ., = K log ne (2.3.11)
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Erdds and Rényi case: Let Al be the event that a random

graph Pn N is completely connected, so that P(Al)= e®"
e

2¢c

(Theorem 2.2.1); let A_ be the event that Fn N is not
Ve

2

—e—2C
completely connected, then P(A2)= 1 - e”°

In this

case

-2¢

-2 _
+ (1-e~F ‘2c)log(1—e—e )]

e—2¢C

- c -
H -K[e™® log e

2(j e—2c

—(2c+e + log(1 - e— ) _

jasd
|

= =K[-e

_e-2C 8_20

e log(l - e~ )] (2.3.12)

Other cases may be handled in a more or less similar

manner.

2.4 Entropy for a Probability Model

We compute now the value of the entropy function for
an actual set of data ftaken from an example given in
Bhargava [3]. In [3] Bhargava considers a digraph type
model for a group dynamics situatilion which consists of 25
"members," each making three "choices" of "association"

from among the remaining 24 "members". The "group
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configuration" thus obtalined can be reasonably represented
by a digraph with n=25 vertices, and N=75 difected edges,
such that there are exactly three outgoing edges from
every vertex to any of the remaining 24 vertices. 1In

his probabilistic model, Bhargava's approach consists

in viewing the total "group configuration" as an aggregate
of the '"subgroup configurations of order k, k>2," where
each of the "k-order subgroup configurations" is itself

an aggregate of the "binary dyadic relations" between
pairs of "members" of the group. In this fashion, a
stochastic process is described, and exact and apprcximate
probabilities are derived for various cases. We investigate
below two of these cases, for k=2 and k=3, from the view-
point of the amount of information contained in these

experiments.

Case k = 2: The events Al, A2, A3 correspond, for a dlgraph

of order two, to the connectedness properties---strongly

connected, unilaterally (but not strongly) connected, and
disconnected. (There are no weakly connected digraphs of

order two.) The exact and approximate probabilities are
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denoted by P(Aj) and ?(Aj) respectively, and are gilven by
(1) P(A) = 02, P(A) = 20(1 - 8), P(Ag) = (1 -8)2

where 6 is the ratio of the number of outgoing edges from a
vertex to the total number of vertices minus one (6 is also
called the "rate of valency").

(ii) For 6 = 3/24, we have

227/300.

g
=
~

I

5/300, P(AQ) 68/300, P(A3)

229/300.

o
7~
b=
S
]

5/300, P(A,) = 66/300, ?(A3)

For case (i) the entropy function H is given by

H = -K f P(A_.) log P(A,)
j:l J J
2 2
= -K[6" log 6 + 26(1-6) log 26(1-8) +

(1-26+82)10g(1-26+6°) ]

= —K[262loge/2(1-9) + 20log 29(1—8)/(1—6)2 +
62log(l—6)2 + log (1—6)2]

= —K[e2log 1/4 + 20log 26/(1-6) + log (1—6)2]

H = -K[-.60216° + 20log 26/(1-8) + 2 log (1-6)7 (2.4.1)

where K = 2.103 using common logarithms to base 10.
For case (i1i) the entropy functions Hoxqet and Happrox.

are found to be (using logarithms to base 10)
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3

H = -K § P(A.) log P(A )
exact j;l j 3
= -K[5/300 log 5,/300 + 68/300 log 68/300 +
 227/300 log 227 /300]
= ~K[.0167(-1.77815) + .2267(-.64461) +
.7567(-.12109) ]
= -K[-.2674]
Hyvmot = .5623 (2.4,2)
H 3 P(A.) P
= -K Y P(A,) log P(A )
approx jjl i j
= -K[5/300 log 5/300 + 66/300 log 66/300 +
229/300 log 229/300]
= -K[-.02970 -.1447 —.08974]
= ~K[-.2641]
Happrox = .55514 (2.4.3)

We remark that the values of Hexact and Happrox_ as
given by (2.4.2) and (2.4.3) respectively are not mucu
different from each other, and from the viewpolint of the

entropy, the approximation seems to be quite good.

Case k = 3: The events Al, A2, A3, A)4 correspond, for a

digraph of order three, to the connectedness properties---
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strongly connected, unilaterally (but not strongly) connected,
weakly (but not unilaterally) connected, and disconnected.
The exact and approximate probabilities are again denoted

by P(Aj) and ?(Aj) respectively, and are given by

03(2 + 30- 392 + 293)

(1) P(ap) =
P(Ay) = 66°(1 = 8)(1 - 262 + &)
P(A3) = 692(1 - e)Ll
P(A,) = (1 - 0)'(1 + be - 20°)

where ¢ 1s the rate of valency as previously described.

(ii) Fore = 3/24, we have

P(Al) = 10/2300 ?(Al) = 10/2300
P(Az) = 186/2300 F(A2) = 183/2300
P(A3) = 112/2300 'F(As) = 126/2300
P(Ay) = 1992/2300 ?(Au) = 1981/2300
For case (ii) the entropy functions Hexact and Happrox.

are found to be

M
H = =K PCA 1 P(A
exact j;l ( j) og P J)
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= -K[10/2300 log 10/2300 + 186/2300 log 186/2300 +

112/2300 log 112/2300 + 1992/2300 log 1992/2300]

-K[.004348 (-2.36173) + .08087(-1.09222) +
L4870 (-1.31251) + .8661 (-.06244)]

= -K[-.21660]
Hoxact = -3598 (2.4.1)
where K = 1.661.
i
Happrox. = -KJZIP(AJ) log P(Aj)
= -K{10/2300 log 10/2300 + 183/2300 log 183/2300
+ 126/2300 log 126/2300 +
1981/2300 log 1981/2300]
= -K[.004348(~-2.36173) + .07956(-1.09928) +
.06897(-1.26136) + ,8618(-.06485)]
= _K[-.22265]
Happrox. = .3698 (2.4.5)

By putting P(Aj) = 1/4, j = 1, 2, 3, 4, we get

M

Hooy, = _KjZlP(Aj) log P(Aj)

-K{1/4 log 1/4 + 1/4 log 1/4 + 1/4 log 1/4 +
1/4 log 1/4]

-K[-log 4]
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-K[-.60206]

1.00 (2.4.6)

o
]

max.

We notice that for case k = 2 the entropy is larger
for the exact probabilities than for the approximate
probabllities, as we would expect. And for case k = 3
the reverse situation 1s true; the entropy for the approximate
probabilitlies is greater than that for the exact probabilities.
However, in both cases, the absolute difference between
the exact case and the approximate case 1is relatively very

small, and, hence, from the viewpoint of entropy the approxi-

mations seem very good.
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